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Dispersive lattice functions in a six-dimensional pseudo-harmonic-oscillator
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National Laboratory for High Energy Physics (KEK), 1-1 Oho, Tsukuba, Ibaraki 305, Japan

~Received 9 September 1997; revised manuscript received 11 February 1998!

We derive dispersivelike lattice functions in a way totally invariant under canonical transformation. This
bridges the gap between invariant treatments that use only the coefficients of the coupled Courant-Snyder
invariants as lattice functions and treatments that introduce dispersive lattices functions that depend on par-
ticular parametrizations.@S1063-651X~98!12907-0#

PACS number~s!: 29.20.Dh, 42.15.Eq
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I. INTRODUCTION

In this paper I would like to use certain symmetri
present in a periodic system in an attempt to classify
types of lattice functions that can be defined in the case
linear oscillatory map. The main result of this paper conce
the existence of ‘‘dispersive’’ lattice functions when all th
planes are oscillating. Dispersion is a mathematically w
defined concept when the energy is constant~no cavity and
no radiation!; however, it does not seem to exist in a thre
dimensional pseudo-harmonic-oscillator. In this paper I
fine dispersive lattices functions that are invariant under
choice of canonical transformations. In the symplectic c
the invariance is connected to ergodic averages, which
be defined ‘‘experimentally’’ and thus must be invariant u
der the theoretical technique used to compute them. I sh
as it is well known, that ergodic averages of quadratic m
nomials are related to the usual lattices functions~Twiss pa-
rameters in one-dimension! while stroboscopic~or adiabatic!
averages are related to dispersive quantities.

Finally, I express the one-turn matrix in terms of the
lattice functions; the natural appearance of the dispersive
tice functions in such a parametrization explains w
‘‘Courant-Snyder–like’’ parametrizations@1# of the matrix
in terms of lattice functions are not found in the literatu
~see the one-turn map of Ref.@2#! in more than one degree o
freedom. Nevertheless, I succeed in expressing the pre
dispersive functions entirely in terms of the old Coura
Snyder parameters, even in the general case of the dam
~nonsymplectic, radiative! pseudo-harmonic-oscillator re
evant to electron rings.

II. DIAGONALIZATION AND INVARIANTS

In a periodic or a repetitive symplectic system such a
ring, it is normal to ask questions concerning the ‘‘at infin
behavior.’’ Are particles confined and if so on what trajec
ries do they sit? Therefore, one finds that many avera
over distributions are closely related to ergodic averages o
a single trajectory. This is true at least for the symplec
system. Indeed, a tracking code will display ellipses or L
sajous figures in phase space. A knowledge of the param
zation of the surfaces provides us with the ‘‘infinite time
behavior. Clearly, whatever at infinity property a trajecto
has, it is invariant under initial conditions chosen on th
trajectory. Any mathematical attempt to compute this traj
PRE 581063-651X/98/58~2!/2481~8!/$15.00
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tory will lead to invariant functions.
The symplectic or Hamiltonian case is easiest to und

stand and has this physical interpretation based on erg
averages. Therefore, I will discuss it first. A more dry a
proach will be introduced later to prove the invariance
these lattice functions in the nonsymplectic case.

Let us assume that the one-turn matrixM for a ring is
symplectic~derivable from a Hamiltonian!. Then this implies
that in a judicious choice of coordinates the matrixM and its
transposedM̃ must obey

J5MJM̃ ~1!

where

J5S 0 1 0 0 0 0

21 0 0 0 0 0

0 0 0 1 0 0

0 0 21 0 0 0

0 0 0 0 0 1

0 0 0 0 21 0

D .

We then assume that the motion produced byM is pseudo-
harmonic. This is a fancy way of saying that the matrixM
can be diagonalized as

M5ARA21, ~2!

whereA, it turns out, can be a symplectic matrix andR is a
rotation:

R5S r 1 0 0

0 r 2 0

0 0 r 3

D ,

r i5S cosm i sin m i

2sin m i cosm i
D . ~3!

The angles of the rotation, known as the tunes, are certa
unique modulo 2p, but the matrixA is not unique. This can
be seen by adding a rotationr to A:
2481 © 1998 The American Physical Society
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2482 PRE 58ÉTIENNE FOREST
~4!

Thus we have a certain freedom in choosingA. The fact that
A may vary at most by a rotation~providedA is restricted to
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symplectic, i.e., canonical, matrices! implies that the radii of
the new trajectory are invariants as well. Let us compute
of these radii. If a particle has initial conditionszW0
5(x,px ,y,py ,t,pt), then in normalized variables it will have
the initial conditions
e square
A21zW05A21S x

px

A
D 5S A11

21x1A12
21px1A13

21y1A14
21py1A15

21t1A16
21pt

A21
21x1A22

21px1A23
21y1A24

21py1A25
21t1A26

21pt

A
D , ~5!

which, we want to emphasize, are not unique. However, the radii are unique and characterize a trajectory. Denoting th
of the radius in the first plane by«1, in two degrees of freedom it is given by

«1~zW !5~A11
21x1A12

21px1A13
21y1A14

21py!21~A21
21x1A22

21px1A23
21y1A24

21py!2

5$~A11
21!21~A21

21!2%x21$~A12
21!21~A22

21!2%px
212$A11

21A12
211A21

21A22
21%xpx1$~A13

21!21~A23
21!2%y2

1$~A14
21!21~A24

21!2%py
212$A11

21A13
211A21

21A23
21%xy12$A11

21A14
211A21

21A24
21%xpy12$A12

21A13
211A22

21A23
21%pxy

12$A12
21A14

211A22
21A24

21%pxpy12$A13
21A14

211A23
21A24

21%ypy . ~6!
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In one degree of freedom this reduces to the usual Cour
Snyder invariant

«5gx21bp212axp, ~7!

where

g5~A11
21!21~A21

21!2,

a5A11
21A12

211A21
21A22

21 ,

b5~A12
21!21~A22

21!2.

The coefficients of this invariant as well as the multidime
sional equivalents must themselves be invariant under
choice ofA21. In other words, if a matrixB215r 21A21 as
in Eq. ~4! is used to define the functions« i , these« i ’s should
be the same as the one defined usingA21. Two polynomial
functions are identical if the coefficients multiplying ea
monomial are the same~monomials form a basis in the vec
tor space of functions!. This implies that the coefficients de
noted here asa, b, andg, as well as all the others in Eq.~6!,
are invariant under a change of the matrixA21.

In summary, the radii in normalized variables are inva
ant along the trajectory. The invariance of these functio
implies that the coefficients that define them are invariant
the diagonalization process. We should not forget the ob
ous: The tunes themselves are invariants of the diagona
tion process.

We can even say more about these functions if we us
bit more physical intuition. Consider any quantity that is o
nt-

-
e

-
s
f
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a-

a
-

viously time ~or turn! invariant such as the average of
function or the extrema reached by a function. Such a qu
tity will depend only on the initial value of the invariant
defined above. Why? If the averages or extrema exist, t
they have to be the same for any point along the trajecto
i.e., they cannot depend on ‘‘time.’’ In normalized variable
time is just the action of the matrixR; thus it is not surprising
that the invariants have to be made out of ‘‘contractions’’
A or A21 that are invariant under rotation.

For example, in one degree of freedom, it is easy to sh
that the ergodic averages ofx2, p2, andxp are given by the
formulas~here we assume that the tune is irrational!

^x2&5
b«

2
, ^p2&5

g«

2
, ^xp&52

a«

2
. ~8!

In conclusion, the so-called lattice functions emerge na
rally whenever we examine properties that are invariant
der iteration of the map. We will see how it is possible
derive such formulas using the canonical transformationA
and the symplectic condition.

III. ERGODIC AVERAGES

In this section I will derive two types of ergodic average
One is a regular average over the trajectory and the other
is a stroboscopic average. Both will lead to invariants. W
start, as we did before, by transformingzW into normalized
space, each subspace characterized by a tunem i :
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~9!

In this space the trajectories are circles by assumption. Therefore, we can express a trajectory as

wW ~n!5RnA21zW5@A«1cos~nm11f1!,2A«1sin~nm11f1!, . . . ,A«3cos~nm31f3!,2A«3sin~nm31f3!#. ~10!
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The ray atn50 must correspond to the initial ray of Eq.~9!.
Both quantitiesf i and« i can be chosen to satisfy this nee
As we have seen, the quantity« i is invariant and, in fact, the
canonical nature of the original variables implies that
Poisson bracket@f i ,« i # is equal to 2. Thus one can identif
Ji5« i /2 with the usual action variable canonically conjuga
to f i . Let us return to ergodic averages.

A. Regular ergodic averages

We first assume that the three tunesm i are prime among
each other, i.e., they are not on a resonance. We then r
press the trajectory in real spacezW(n) in terms of the trajec-
tory in normalized space

zW~n!5AwW ~n!. ~11!

Away from resonances, it is clear that the ergodic aver
over all three tunes of Eq.~11! will be zero because i
amounts to an average of sines and cosines over their res
tive phases: Thus the linear moments^za& are null.

The next possibility is to consider the so-called beam
velope^zazb& defined by an ergodic average. We can expr
this ergodic average as

^zazb&5K (
i ,s

Aa(2i 2s)w2i 2s(
j ,h

Ab(2 j 2h)w2 j 2hL ,

~12!

where the latin lettersi , j take the value 1, 2, or 3, while th
greek letters are either 0 or 1. To proceed further we no
that

^w2i 2sw2 j 2h&5
1

2
« id i j dsh , ~13!

whered i j anddsh are Kronecker delta functions, and

^zazb&5
1

2 (
i 51,3

H (
s50,1

Aa~2i 2s!Ab~2i 2s!J « i

5
1

2 (
i 51,3

$Aa~2i 21!Ab~2i 21!1Aa~2i !Ab~2i !%« i .

~14!

Using the symplectic condition, we can rewrite all the abo
formulas in terms of the inverse ofA and thus make a one
to-one connection between the coefficients that define
invariants« i and the coefficients of the beam envelope@see
Eqs.~33! and ~34!#.

It should be said that the results of this section are w
known. In the case of a distribution of particles they are s
valid formulas when the distribution is static, i.e., the pha
.
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space dependence of the distribution is a function of the« i ’s:
In that case one replaces« i /2 by the average of« i over the
distribution.

We will call the lattice functions of this section betaoid
because they appear naturally in the Hamiltonian theory
pseudo-oscillator. The Lie operator for the one-turn line
map is none other than the invariants« i themselves; in fact,
the function 1

2 $m1«11m2«21m3«3% is associated with the
Lie operator of the one-turn map and can viewed as
pseudo-Hamiltonian for the matrixM .

B. Stroboscopic or adiabatic ergodic averages

There are other averages that can be built in terms of
matrix A. Their physical meaning is not so obvious. We w
look at them in two different ways. First we will take th
dispersion route. Our goal is to construct objects that
obviously invariant when the motion in one of the three h
monic plane freezes. The standard dispersion is define
the absence of a cavity, that is to say, in the absence
longitudinal oscillations. The normal form associated w
such a map is different from the pseudoharmonic norm
form. In that case we have only two tunes and five disti
eigenvalues. This is because the motion in the longitud
plane is ‘‘driftlike’’ in nature. The energy is a constant~like
the momentum in a drift! while the time ~or path length!
grows proportionally with the energy. This is exactly true
a region of the ring with no dispersion, i.e., the ra
(0,0,0,0,z5 ,z6) remains~0,0,0,0! in the transverse planes fo
all values of the energyz6. In a dispersive region it can stil
be true if the map is reexpressed around the ene
dependent fixed point; the derivative of this fixed point w
respect toz6 is the dispersion vector. We will not go into th
details of this type of nonoscillatory normal form because
might confuse the reader needlessly. Suffice it to say that
is what happens if there is no longitudinal focusing in a rin
The energy is constant and the transverse closed orbit va
with energy~for example, the cyclotron!. That variation is
the dispersion.

Returning to our three-dimensional oscillator, we can a
the following question: Under what condition do we see t
effect of dispersion in a system without energy conservati
Physically, one should slowly lower the voltage on the
system until it is zero. As we do this, the main linear effe
will be the lowering of the longitudinal tunem3 until it is
zero. The transverse phase space will move slowly as
longitudinal phase space evolves. The slow sloshing b
and forth of the transverse coordinates is closely related
the usual ‘‘cavity-free’’ dispersion. We will see that th
quantity, which seems to be well defined as an adiab
limit, is nevertheless an invariant of the diagonalization p
cess for arbitrary tunes.
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I will now compute this adiabatic average and argue t
it is an invariant using a mathematical and physical ar
ment. Let us start with a ray whose initial condition is

zW5~0,0,0,0,0,z6! ~15!

and transform it into normalized space using Eq.~9!:

~16!

The next step consists in letting the ray of Eq.~16! evolve
under the action of the rotationR as in Eq.~10!. If we as-
sume that the motion is adiabatic in the third plan
m1

21 ,m2
21!m3

21, then the average of^wW & over the short time
scale of min (1/m1,1/m2) will be given by

^wW &1,25z6~0,0,0,0,A56
21 ,A66

21!. ~17!

Of course this simply says that in normalized variables
first two planes, on their respective circular trajectories,
erage to zero before the positions (w5 ,w6) have any time to
move and thus are frozen at their initial values. These va
are of course dependent on the normal form; however, if
project this ray back into the original physical space
should get the dispersion

^zW&1,25z6hW 5A^wW &1,25z6S A15A56
211A16A66

21

A25A56
211A26A66

21

A35A56
211A36A66

21

A45A56
211A46A66

21

A55A56
211A56A66

21

A65A56
211A66A66

21

D . ~18!

The first four entries must reduce to the cavity-free disp
sion in the limit of vanishingm3; the fifth and sixth entries
are, respectively, zero and one if the map is symplectic
the longitudinal motion is not very dependent on the tra
verse positions.

It is clear that, in the limit ofm3 going to zero, the vecto
created in Eq.~18! cannot depend on the choice of canonic
transformation. This is nota priori obvious ifm3 is arbitrary.
However, it is true. Before proving this explicitly in the ge
eral nonsymplectic case, I would like to argue this on
basis of a gedanken experiment.

First of all, it is clear that one can measure the three tu
m1, m2, andm3 using a turn-Fourier transform of some qua
tity such as the energy or position. From this one can ext
m3 with any desired accuracy~theoretically!. Second, one
can slightly change the machine so that some multiple ofm3
is a multiple of 2p. Theoretically, this can be done wit
infinitesimal changes in the machines because rational n
bers are dense in the real numbers. Let us assume that in
km35m2p, where bothk and m are integers. We then
launch a particle with initial conditions given by Eq.~15! and
we observe this ray everyk turns and average over the turn
The result will be given by Eq.~18! as well. In this case al
the quantities necessary for performing this measuremen
t
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measurable, unique, and do not depend on the choice o
transformationA. More importantly, there is nothing re
quired concerning the relative sizes of the three tunes.
only need that the two remaining tunes must be irrationa

Mathematically, the argument is even simpler: One av
ages around the invariant tori of first and second tun
While the actual phase of a ray is arbitrary and depends
A, the integral around each torus cannot depend onA but just
on the radius, which we know is an invariant in canonic
perturbation theory.

The above considerations imply that one could have
lected any initial ray and any tune in lieu of (0,0,0,0,0,z6)
andm3 and one would still have produced invariant quan
ties. Therefore, we define the stroboscopic invariants

h jk
i 5A~2i 21! j

21 Ak~2i 21!1A~2i ! j
21 Ak~2i ! . ~19!

The dispersion of Eq.~18! is a special case of Eq.~19!. I call
these functions etaoids because they are dispersive in n
in the adiabatic limit or stroboscopic interpretation. T
regular lattice functions of Eq.~14!

(
s50,1

Aa~2i 2s!Ab~2i 2s!5Aa~2i 21!Ab~2i 21!1Aa~2i !Ab~2i !

~20!

will be called betaoids since they are, like the usual Tw
parameters, related to the envelope^zazb& and to the Hamil-
tonian ~Lie! representation of the map.

We have seen physical justifications for the existence
the betaoid and etaoid invariants and they are based on
Hamiltonian nature of the flow of a pseudo-harmon
oscillator. It is remarkable that the invariants have an ext
sion to the nonsymplectic case most relevant to elect
rings. The proof of this is simple but somewhat dry. It
presented in the next section.

IV. MATHEMATICAL POINT OF VIEW

We have seen how lattice functions emerge from ask
questions about the properties at infinity, a very natural th
to do in the study of dynamical systems. There is a d
mathematical way to get the same answers and a little
more. This way has the advantage of being extendable
damped systems. If a small amount of radiation is added
ring, the closed orbit will move slightly and the eigenvalu
will go off the unit circle by small amounts@3–5#. In this
case we have six complex eigenvalues of the form

l2a2s5exp@~21!sima2aa#; ~21!

wherea51,2,3 ands50,1. The map can be put into a no
mal form analogous to that of the pseudo-harmon
oscillator:

M5ALRA21. ~22!

None of the matrices involved in this normalization are sy
plectic except forR. The matricesR andL are, respectively,
a phase space rotation and a diagonal damping matrix
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R5S R1 0 0

0 R2 0

0 0 R3

D , ~23!

where

Ri5S cosm i sin m i

2sin m i cosm i
D , ~24!

and

L5S L1 0 0

0 L2 0

0 0 L3

D , ~25!

where

L i5S exp~2a i ! 0

0 exp~2a i !
D . ~26!

This normal form is appropriate to electron rings in the pr
ence of classical radiation. It is also useful when consider
the stochastic maps on moments@5#. Here we will restrict
our discussion to the deterministic damped map.

As in the symplectic case we know that the eigenvalue
M are unique and thus the matricesR and L are unique
provided we associate each eigenvalue with a definite pl
The mapA, however, is not unique. This is because t
matrix LR commutes with a similar matrixdr ,

M5ALRA21

⇓

5AdrLRr21d21A21, ~27!

wherer is a rotation likeR andd is a dilation likeL. The
next step is to construct invariants of the diagonalizat
process usingA and/or A21. Let us look at the matrix
r 21d21A21 first:

r 21d21A215S d1
21r 1

21 0 0

0 d2
21r 2

21 0

0 0 d3
21r 3

21
D

3S S A11
21

A21
21D ••• S A16

21

A26
21D

A A A

S A51
21

A61
21D ••• S A56

21

A66
21D D .

If we define some minivectors using the matrixA21,

vW i j 5S A(2i 21) j
21

A(2i ) j
21 D , i 51, . . . ,3, ~28!

then the matrixr 21d21A21 is composed of the minivector
-
g

f

e.

n

d i
21r i

21vW i j 5d i
21r i

21S A(2i 21) j
21

A(2i ) j
21 D , i 51, . . . ,3. ~29!

In the presence of damping it is clear that no invariants of
normalization process can be constructed out of the miniv
tors of Eq. ~29! alone. However, consider the transpose
the matrixAdr , which is justdr 21A. As before we define a
set of minivectorswW i j based on this matrix:

d i r i
21wW i j 5d i r i

21S Aj (2i 21)

Aj (2i )
D , i 51,2,3. ~30!

Now we are ready to define two sets of invariants of t
diagonalization process. First we take the dot product
these minivectors

h jk
i 5d i

21r i
21vW i j

•d i r i
21wW ik5vW i j

•wW ik5A~2i 21! j
21 Ak~2i 21!

1A~2i ! j
21 Ak~2i ! . ~31!

The damping conveniently cancels out. As for the rotati
we know that it leaves the scalar product invariant and t
h jk

i is the same for all possible choices of the transformat
A. We also know that the wedge or cross product is l
invariant by planar rotations; therefore, we define the se
functions

b jk
i 5d i

21r i
21vW i j `d i r i

21wW ik5vW i j `wW ik5A~2i 21! j
21 Ak~2i !

2A~2i ! j
21 Ak~2i 21! , ~32!

where (x,y)`(a,b)5xb2ya. As in the symplectic case we
expect quantities that do not depend on the normaliza
being a function of these generalizedh ’s andb ’s only.

V. RELATIONS BETWEEN BETAOIDS IN THE
SYMPLECTIC CASE

As we have said the betaoids appear in two differ
ways. First, we know that the radii in normalized space
invariants and this leads us to contractions ofA21 with itself.
Second, we also know that ergodic averages of the quad
moments must also be invariants; from this emerges cont
tions of A with itself.

Finally, mathematical manipulations in the arbitrary no
symplectic case forces us to consider contractions ofA with
its inverse only. It remains to be proved that these are all
same invariants in the symplectic case. To do this one u
the definition of a symplectic matrix given by Eq.~1!. Let us
introduce the following notation for an indexj running from
1 to 6:

if j 51,3,5 then j̄ 52,4,6;

if j 52,4,6 then j̄ 51,3,5.

Then it follows from the symplectic condition that the beta
ids can be rewritten as
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2486 PRE 58ÉTIENNE FOREST
b jk
i 52Jkk̄$A~2i 21! j

21 A
~2i 21!k̄
21

1A~2i ! j
21 A

~2i !k̄
21

%52
1

2
Jkk̄

]2« i

]zk̄]zj

~33!

or as

b jk
i 5Jj j̄ $Aj̄ ~2i 21!Ak~2i 21!1Aj̄ ~2i !Ak~2i !%52Jj j̄

]^zkzj̄ &
]« i

.

~34!

Thus, in the symplectic case Eqs.~6! and~14! are equivalent.
Finally, before discussing the nonsymplectic case, I w

to point out that a measurement of the beam envelope
lead to a measurement of the emittances and through
equivalence established in Eqs.~33! and~34!. The argument
will be presented in two degrees of freedom as it clea
extends to a higher dimensionality. We start by construct
the following Hamiltonian made of the ergodic envelope:

h~zW !5^px
2&x21^x2&px

21^py
2&y21^y2&py

222^xpx&xpx

12^pxpy&xy22^pxy&xpy22^xpy&pxy12^xy&pxpy

22^ypy&ypy . ~35!

From Eqs.~33! and~34! we see that this Hamiltonian is jus

h~zW !5
«1

2
«1~zW !1

«2

2
«2~zW !. ~36!

The quantities«1 and «2 are the numerical values of th
emittances of the trajectory being ergodically averaged.
functions«1(zW) and«2(zW) are the Courant-Snyder invarian
functions for this linear system

h~zW !5
«1

2
«1~zW !1

«2

2
«2~zW !. ~37!

If we now perform a normal form on this Hamiltonian, th
result will be

hnormal~zW !5
«1

2
~x21px

2!1
«2

2
~y21py

2!. ~38!

The effect of the normal form will be to turn the invaria
functions«1(zW) and«2(zW) into radii in phase space. Thus
follows that the numerical values of the emittances«1 and
«2, can be read off easily. Once these are known the beta
can be obtained using Eq.~14!. We will now discuss the fina
topic of this paper, which relates to the significance of th
invariants in the nonsymplectic case and to the parametr
tion of the one-turn map.

VI. PHYSICAL INTERPRETATION IN THE GENERAL
CASE

The general case corresponds to a particle underg
classical radiation and whose energy is restored at th
cavities. Accelerator physicists design such systems by
quiring that the eigenvalues of the matrix be inside the u
circle by a small amount. The beam will then contract un
the quantum fluctuations due to the granularity of the pho
t
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become significant. The beam reaches an equilibrium. T
quantum effect is totally ignored in this paper, but the d
scriptions of the lattice functions presented here are relev
to the computation of the equilibrium envelope^zazb& de-
fined by distribution averaging~not ergodic averaging!.

In the deterministic case of a damped pseudo-harmo
oscillator it is physically inadequate to derive the invaria
betaoids or etaoids using ergodic averages. Indeed, at infi
the beam collapses to the origin and thus all averages
trivially null. Thus it is not surprising that expressions~33!
and ~34! are not valid invariants of the damped pseud
harmonic-oscillator. We may be tempted to give them
following meaning: It can be shown that the Courant-Sny
invariants defined in terms ofA21 will shrink towards the
origin and keep their shape. Indeed, if a distribution of p
ticles depends only on the functions« i(zW), i.e.,r(«1 ,«2 ,«3),
then the new distribution after one turn will be given by

exp~2$a11a21a3%!r~e~2a1!«1 ,e~2a2!«2 ,e~2a3!«3!.
~39!

For small damping, away from linear resonances, it is t
that the equilibrium distribution has the form of Eq.~39! and
thus one can compute the so-called equilibrium emittan
and feed them into a Gaussian distribution that is a funct
of the Courant-Snyder functions. In the general case, we c
not talk of equilibrium emittances based of the functions« i
and thus the formulas for the Courant-Snyder functions
not enter in any physically well-posed problem. Only t
invariants computed in Eqs.~31! and ~32! are potentially
present in the general linear case.

Thus we may ask the following questions: What quan
ties, if measured by two observers, will always be the sam
What quantities do not depend on the actual method or tra
formationA used in computing them? The answer is som
what trivial: the one-turn matrix itself, the tune, and dampi
shifts due to some perturbations. Let us start with the sh
The Sands, Chao, and envelope formalisms all give formu
for the damping as a function of the radiation field. It
remarkable that formulas for the shift of the tune~complex
part of the eigenvalues! depend only on the betaoids, whil
formulas for the damping depend only on the etaoids.

A. Tune and damping shifts

Since we are interested in first-order perturbation theo
it suffices to see the effects of a perturbation~radiation for
example! at one point around the ring. Thus, suppose we
to perturb the ring by a linear vector fielddFW whose action is
localized. That is to say, at a given point in the ring, t
phase space coordinatezW is modified by a small linear im-
pulse forcedFW :

zW f in5zW ini1dFW , ~40!

where

dFi5(
j

dFi j zj .

In the language of Lie operators, which does not assu
linearity, the original one-turn Lie mapM is modified by the
new impulsedFW and by the normalization transformationA
as
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AMnewA215AM exp~dFW •¹W !A21

5AMA21A exp~dFW •¹W !A21

5R exp~AdFW •¹WA21!. ~41!

Here the mapR is the Lie map associated with the origin
matrix LR of Eq. ~22!. The effect of the transformationA on
the Lie operatordFW •¹W , denotedAdFW •¹WA21 in Eq. ~41!,
can be computed and the answer is

if AdFW •¹WA215dGW •¹W ⇒dGk5 (
a,b,c

Aka
21dFabAbczc .

~42!

The next steps, which I will omit, consist in extracting th
generators of rotations in the three phase space planes as
as the generators of damping. The coefficients in front
these generators are~with some constants! the tunes and the
dampings. The formulas for the shift of the complex eige
values$6 im j2a j% are

m j
new5m j1

1

2 (
a,b

bab
j dFab ,

a j
new5a j1

1

2 (
a,b

hab
j dFab . ~43!

Since the coefficientsdFab are arbitrary in the general cas
and since the eigenvalues cannot depend on the diagona
tion process, we conclude that the functionsbab

j andhab
j are

invariant of the diagonalization process. Of course these
the same functions we defined in Sec. IV. The formula
the damping in Eq.~43! is very famous in the context of th
computation of synchrotron integrals. In particular it is cu
tomary to write the damping in the longitudinal plane only
terms of the dispersion@6#. In the transverse plane, becau
the longitudinal tunem3 is small, it is useful to derive mixed
formulas involving the transverse betaoids and the usual
persions. In Ref.@5# Ohmi, Hirata, and Oide pointed out tha
this can be done rigorously using a special parametrizatio
A. However, noticing that the etaoids and betaoids are
independent, we can actually perform such transformati
in the general case without using a special parametrizat
For example, in two degrees of freedom, the formula for
ergodic~or distribution! averagê x2&, wherex5z1, can be
rewritten as

^x2&5bxx

«x

2
1

1

~h33
2 !2

$bzzzz
21gzzhz

222azzzzhz%
«z

2
,

~44!

where zW5(x,px ,z,d), bxx52b21
1 , bzz52b43

2 , gzz5b34
2 ,

andazz5b44
2 . This formula should be contrasted with

^x2&5bxx

«x

2
1bxz

«z

2
, ~45!

wherebxx52b21
1 andbxz52b21

2 , which is obtained from a
‘‘normal’’ pseudoharmonic analysis using Eq.~14!, for ex-
ample@2#. Biased formalisms, mixing etaoids with betaoid
are necessary for pseudo-harmonic-oscillators when
ell
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wants to exploit certain properties such the smallness o
tune. In Ref.@5# it was shown that such formalisms can ri
orously diagonalize a pseudo-harmonic-oscillator. The
thors constructed a special parametrization for that purp
here I point out that there is a more fundamental link b
tween the usual symplectic formalism~all the planes are on
an equal footing! and the biased formalism. This link is re
alized through the interdependence of the betaoids and e
ids.

Our discussion was centered on the computation of
tunes. Of course the vector field itself and thus the one-t
matrix should be expressible in terms of our invariant fun
tions alone. This is the topic of the next subsection.

B. The one-turn symplectic matrix

Although the comments of this section can be extende
the damped nonsymplectic system, here I will restrict
discussion to the Hamiltonian case for simplicity. In one d
gree of freedom, it is well known that the one-turn matr
can be expressed in terms of the tunes and the Twiss f
tions ~one degree of freedom betaoids!:

M5S cosm1a sin m b sin m

2g sin m cosm2a sin m D . ~46!

The functionsb, g, anda are, respectively,2b21
1 , 2b12

1 ,
andb22

1 . It is remarkable that no etaoids enter into this fo
mula.

The question is whether or not it is possible to exte
formulas for the one-turn matrix that depend only on t
tunes and the betaoids. We will discover three facts in t
section.

~i! When we express the one-turn matrix in terms of t
invariants, it most naturally comes in terms of a mix
betaoid-etaoid representation.

~ii ! In the symplectic case, it should be possible to hav
pure betaoid representation, but it must be very messy
obtain. This is why it is not seen in the ‘‘coupled’’ formalism
literature.

~iii ! Finally, we will give a formula that relates the etaoid
to the betaoids even in the general case.

We start with the expression for the symplectic one-tu
matrix in terms ofA, A21, and R and then use the simpl
nature of the rotationR:

Mab5 (
j ,k51,6

Aa jRjkAkb
21

5 (
j 51,3

$Aa~2 j 21!A~2 j 21!b
21 1Aa~2 j !A~2 j !b

21 %cosm j

1$Aa~2 j 21!A~2 j !b
21 2Aa~2 j !A~2 j 21!b

21 %sin m j

5 (
j 51,3

$hba
j cosm j2bba

j sin m j%. ~47!

In the case of one degree of freedom, the etaoids are equ
either one or zero. It is a simple exercise to regain the
mous formula~46!.

In more dimensions it appears that the presence of eta
is unavoidable in the one-turn matrix and therefore it is
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big surprise that no Courant-Snyder–like formula exists
the literature for the one-turn matrix that involves only t
coefficients of the invariants« i ~betaoids! and the tunes.
However, the reader familiar with Lie methods knows th
the one-turn map is actually the exponential of the Pois
bracket operator associated with the function

2
1

2
$m1«11m2«21m3«3%

and thus the one-turn map can in theory be a function of
betaoids only, albeit an infinite series. However, in the c
of a symplectic map, it turns out that it is possible to expr
the etaoids in terms ofonly the betaoids using formulas~33!
and~34!. First, we recall that the general derivation of the
invariants involves the dot and wedge product of two v
tors. We know that these are related so that if

~x,y!`~a,b!5xb2ya

and

~x,y!•~a,b!5xa1yb,

then

$x21y2%$a21b2%5$~x,y!`~a,b!%21$~x,y!•~a,b!%2.
~48!

This equation is applied toh jk
i andb jk

i with the result that

$h jk
i %21$b jk

i %25$~Ak~2i 21!!
21~Ak~2i !!

2%

3$~A~2i 21! j
21 !21~A~2i ! j

21 !2%. ~49!

Finally, we use Eqs.~33! and ~34! to rewrite the right-hand
side of Eq.~49! in terms of betaoids:

$h jk
i %25Jk̄kJj j̄ b j j̄

i
b k̄k

i
2$b jk

i %2. ~50!

We now substitute this result in Eq.~47!,

Mab5 (
j 51,3

hba
j cosm j2bba

j sin m j

5 (
j 51,3

sgn~hba
j !AJāaJbb̄bbb̄

j
b āa

j
2$bba

j %2

3cosm j2bba
j sin m j . ~51!

This formula is somewhat impractical unless the sign ofhba
j

l-
,

n

t
n

e
e
s

-

is known in advanced. Nevertheless, it is interesting to
write hba

j is terms of either the moments or the Coura
Snyder coefficients

uhba
j u52A]^zb̄

2
&

]« j

]^za
2&

]« j
2H ]^zb̄za&

]« j
J 2

5
1

2A]2« j

]zā
2

]2« j

]zb
2

2H ]2« j

]zā]zb
J 2

. ~52!

@These formulas look very much like the so-called invaria
emittance defined aŝ x2&^p2&2^xp&2. This emittance,
which is an average over anarbitrary distribution, is pre-
served by one-degree-of-freedom linear symplectic maps
fact, it does not change even if we transport it with any line
map. It is thus a much stronger invariant and should not
confused with our betaoids and etaoids. In fact, the rea
will notice that this emittance looks very much likeh11

1 ,
which happens to be a trivial constant~namely, one! in the
one-degree-of-freedom case.# Notice that in the symplectic
case it is easy to check using Eq.~52! thathaā

j
50 using Eq.

~52!. Finally, in the general case, we can derive a formula
hba

j only in terms of the betaoids:

hba
j 52(

c,n
bbc

j bca
n . ~53!

This formula was derived by comparing Eq.~47! with the
Lie representation when all the tunes are near 90°. Howe
it can be proved to be true by direct substitution, which i
plies that the formula is true for all damped pseud
harmonic-oscillators.
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